Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vascul Pharmacol ; 136: 106818, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33227452

RESUMO

OBJECTIVE: Rivaroxaban is a specific factor Xa (FXa) inhibitor for venous thromboembolism treatment. Recently, increasing evidence have reported the beneficial effects of rivaroxaban on treating cardiovascular disorders such as coronary and peripheral artery disease. However, its potential influence on abdominal aortic aneurysm (AAA) remains unclear. This study aims to investigate whether rivaroxaban treatment could attenuate experimental AAA progression and its related mechanisms. APPROACHES AND RESULTS: In human aneurysmal aorta, FXa protein expression was significantly upregulated. Further investigations identified a positive correlation among plasma FXa level, AAA severity (the maximal aortic diameter), and intra-aneurysmal thrombus percentage. In Ang II (angiotensin II)-infused ApoE-/- mice, the administration of high dose rivaroxaban (15 mg/kg/d) for 14 days significantly reduced the maximal aortic diameter, while low dose rivaroxaban (5 mg/kg/d) did not display such a protective role. Although rivaroxaban treatments reduced the incidence of AAA and thrombus formation, these differences did not reach statistical significance. Immunohistochemistry revealed a pronounced aortic remodeling including increased collagen content and enhanced elastin degradation in Ang II-induced AAAs, which was inhibited by high dose rivaroxaban treatment. Further analysis demonstrated that rivaroxaban exerted its protective effects by decreasing leukocyte infiltration, inflammatory cytokines expression, and matrix metalloproteinases (MMPs) expression in the aortic wall. The inhibitory effect of rivaroxaban on aneurysm development was also observed in calcium chloride-induced AAA model. Mechanistically, in human aortic endothelial cells, FXa stimulation increased the expression of inflammatory cytokines (interleukin (IL)-1ß, IL-6, IL-8, monocyte chemoattractant protein-1) and adhesive molecules, which were all reversed by the cotreatment of rivaroxaban. Subsequent monocyte-endothelial cell interaction was enhanced after FXa stimulation and was alleviated by rivaroxaban cotreatment. In addition, FXa induced a significantly heightened expression of MMP2 in human aortic endothelial cells, which was ameliorated by rivaroxaban coadministration. CONCLUSIONS: Rivaroxaban attenuated both angiotensin II- and calcium chloride-induced abdominal aortic aneurysm (AAA) progressions, through inhibiting aortic remodeling and inflammation. Rivaroxaban could be a promising therapeutic agent in attenuating AAA development by counteracting FXa-induced aortic wall inflammation.


Assuntos
Anti-Inflamatórios/farmacologia , Aorta Abdominal/efeitos dos fármacos , Aneurisma da Aorta Abdominal/prevenção & controle , Aortite/prevenção & controle , Inibidores do Fator Xa/farmacologia , Rivaroxabana/farmacologia , Remodelação Vascular/efeitos dos fármacos , Angiotensina II , Animais , Aorta Abdominal/metabolismo , Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/patologia , Aortite/induzido quimicamente , Aortite/metabolismo , Aortite/patologia , Cloreto de Cálcio , Moléculas de Adesão Celular/metabolismo , Citocinas/metabolismo , Dilatação Patológica , Modelos Animais de Doenças , Progressão da Doença , Humanos , Mediadores da Inflamação/metabolismo , Masculino , Camundongos Knockout para ApoE , Estudos Retrospectivos , Transdução de Sinais
2.
Arterioscler Thromb Vasc Biol ; 40(10): 2494-2507, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32787523

RESUMO

OBJECTIVE: Currently, there are no approved drugs for abdominal aortic aneurysm (AAA) treatment, likely due to limited understanding of the primary molecular mechanisms underlying AAA development and progression. BAF60a-a unique subunit of the SWI/SNF (switch/sucrose nonfermentable) chromatin remodeling complex-is a novel regulator of metabolic homeostasis, yet little is known about its function in the vasculature and pathogenesis of AAA. In this study, we sought to investigate the role and underlying mechanisms of vascular smooth muscle cell (VSMC)-specific BAF60a in AAA formation. Approach and Results: BAF60a is upregulated in human and experimental murine AAA lesions. In vivo studies revealed that VSMC-specific knockout of BAF60a protected mice from both Ang II (angiotensin II)-induced and elastase-induced AAA formation with significant suppression of vascular inflammation, monocyte infiltration, and elastin fragmentation. Through RNA sequencing and pathway analysis, we found that the expression of inflammatory response genes in cultured human aortic smooth muscle cells was significantly downregulated by small interfering RNA-mediated BAF60a knockdown while upregulated upon adenovirus-mediated BAF60a overexpression. BAF60a regulates VSMC inflammation by recruiting BRG1 (Brahma-related gene-1)-a catalytic subunit of the SWI/SNF complex-to the promoter region of NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) target genes. Furthermore, loss of BAF60a in VSMCs prevented the upregulation of the proteolytic enzyme cysteine protease CTSS (cathepsin S), thus ameliorating ECM (extracellular matrix) degradation within the vascular wall in AAA. CONCLUSIONS: Our study demonstrated that BAF60a is required to recruit the SWI/SNF complex to facilitate the epigenetic regulation of VSMC inflammation, which may serve as a potential therapeutic target in preventing and treating AAA.


Assuntos
Aneurisma da Aorta Abdominal/prevenção & controle , Aortite/prevenção & controle , Proteínas Cromossômicas não Histona/deficiência , Matriz Extracelular/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Remodelação Vascular , Animais , Aorta Abdominal/metabolismo , Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/patologia , Aortite/genética , Aortite/metabolismo , Aortite/patologia , Estudos de Casos e Controles , Catepsinas/metabolismo , Células Cultivadas , Proteínas Cromossômicas não Histona/genética , Modelos Animais de Doenças , Matriz Extracelular/patologia , Humanos , Mediadores da Inflamação/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Transdução de Sinais
3.
Cell Death Dis ; 11(2): 131, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32071300

RESUMO

Abdominal Aortic aneurysm (AAA) is associated with chronic inflammation, cells apoptosis, and impairment of autophagy. BP-1-102, a novel potent STAT3 inhibitor, has been recently reported to significantly block inflammation-related signaling pathways of JAK2/STAT3 and NF-κB, as well as regulate autophagy. However, its role in vascular inflammation and AAA progression remains to be elucidated. In the present study, the effect and potential mechanisms of BP-1-102 on angiotensin II (AngII) induced AAA in ApoE-/- mice were investigated. AAA was induced in ApoE-/- mice with infusion of AngII for 28 days. BP-1-102 was administrated orally to mice every other day. Mice were sacrificed on day 7, day 14, and day 28 to evaluate the treatment effects. BP-1-102 markedly decreased AAA incidence and aortic diameter, maintained elastin structure and volume, reduced the expression of pro-inflammatory cytokines and MMPs, and inhibited inflammatory cells infiltration. Moreover, BP-1-102 dramatically reduced the expression of JAK2, p-STAT3, p-NF-κB, and Bcl-xL but maintained the expression of LC3B and Beclin in AAA tissues. In vitro, vascular smooth muscle cells (VSMCs) were treated with AngII and/or BP-1-102 at indicated time and concentration. BP-1-102 inhibited AngII-induced JAK2/STAT3 and NF-κB signaling activation and maintained autophagy-related proteins expression in VSMCs. Taken together, our findings suggest that BP-1-102 inhibits vascular inflammation and AAA progression through decreasing JAK2/STAT3 and NF-κB activation and maintaining autophagy.


Assuntos
Ácidos Aminossalicílicos/farmacologia , Aorta Abdominal/efeitos dos fármacos , Aneurisma da Aorta Abdominal/prevenção & controle , Aortite/prevenção & controle , Autofagia/efeitos dos fármacos , Fator de Transcrição STAT3/antagonistas & inibidores , Sulfonamidas/farmacologia , Angiotensina II , Animais , Aorta Abdominal/metabolismo , Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/patologia , Aortite/induzido quimicamente , Aortite/metabolismo , Aortite/patologia , Apoptose/efeitos dos fármacos , Proteínas Relacionadas à Autofagia/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Janus Quinase 2/metabolismo , Masculino , Camundongos Knockout para ApoE , NF-kappa B/metabolismo , Fosforilação , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Remodelação Vascular/efeitos dos fármacos
4.
Cardiovasc Toxicol ; 20(1): 82-99, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31183600

RESUMO

This study investigated whether the whole-plant aqueous extract of Crataegus aronia (C. aronia) could protect against or alleviate high-fat diet (HFD)-induced aortic vascular inflammation in rats by inhibiting the NLRP-3 inflammasome pathway and examined some mechanisms of action with respect to its antioxidant and hypolipidemic effects. Adult male Wistar rats were divided into five groups (n = 6/each): standard diet (10% fat) fed to control rats, control + C. aronia (200 mg/kg), HFD (40% fat), HFD + C. aronia, and HFD post-treated with C. aronia. The HFD was fed for 8 weeks and C. aronia was administered orally for 4 weeks. In addition, isolated macrophages from control rats were pre-incubated with two doses of C. aronia (25 and 50 µg/mL) with or without lipopolysaccharide (LPS) stimulation. Only in HFD-fed rats, co- and post-C. aronia therapy lowered circulatory levels of LDL-C and ox-LDL-c and aortic protein levels of LOX-1 and CD36. C. aronia also inhibited the nuclear accumulation of NF-κB and lowered protein levels of NLRP-3, caspase-1, and mature IL-1ß. In vitro, in the absence of ox-LDL-c, C. aronia led to reduced nuclear levels of NF-κB, ROS generation, and protein NLRP-3 levels, in both LPS-stimulated and unstimulated macrophages, in a dose-dependent manner. However, protein levels of LOX-1 were not affected by C. aronia in unstimulated cells. In conclusion, C. aronia inhibits the NLRP-3 inflammasome pathway, induced by HFD feeding in the aorta of rats, mainly by its hypolipidemic effect and in vitro, in LPS-stimulated macrophages, by its antioxidant effect.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Aorta/efeitos dos fármacos , Aortite/prevenção & controle , Aterosclerose/prevenção & controle , Hipolipemiantes/farmacologia , Inflamassomos/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Extratos Vegetais/farmacologia , Animais , Anti-Inflamatórios/isolamento & purificação , Antioxidantes/isolamento & purificação , Aorta/imunologia , Aorta/metabolismo , Aorta/patologia , Aortite/etiologia , Aortite/imunologia , Aortite/metabolismo , Aterosclerose/etiologia , Aterosclerose/imunologia , Aterosclerose/metabolismo , Células Cultivadas , Crataegus , Dieta Hiperlipídica , Modelos Animais de Doenças , Hipolipemiantes/isolamento & purificação , Inflamassomos/imunologia , Inflamassomos/metabolismo , Mediadores da Inflamação/metabolismo , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/metabolismo , Masculino , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/isolamento & purificação , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
5.
Vascul Pharmacol ; 115: 46-54, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30797043

RESUMO

Chemotherapeutic agents used in cancer treatment associated to nanoparticles (LDE) that mimic the composition of low-density lipoprotein and buffer their toxicity can have strong anti-atherosclerosis action, as we showed in cholesterol-fed rabbits. Here, a novel preparation of docetaxel (DTX) carried in LDE was evaluated. Eighteen rabbits were fed 1% cholesterol during 8 weeks. After the first 4 weeks, 9 animals were treated for 4 weeks with intravenous LDE-DTX (1 mg/kg/week) and 9 with LDE only (controls) once a week for 4 weeks. Animals were then euthanized and the aortas were analyzed for morphometry, immunohistochemistry and Western blot. LDE-DTX treated group showed 80% reduction of atheroma area compared to controls. LDE-DTX treatment reduced in 60% the protein expression of macrophage marker CD68 and of MCP-1 in 80%. LDE-DTX pronouncedly lowered expression of pro-inflammatory markers NF-κB, TNF-α, IL-1ß, IL-6 and von Willebrand factor and elicited 40% reduction in cell proliferation marker PCNA. The presence of smooth muscle cells in the intima was 85% smaller than in controls. Pro-apoptotic caspase 3, caspase 9, Bax, and anti-apoptotic Bcl-2 all were reduced by LDE-DTX. Protein expression of MMP-2 and MMP-9, TGF-ß, and collagen 1 and 3 were also markedly lowered by the LDE-DTX treatment. Animals showed no hematological, hepatic or renal toxicity consequent to LDE-DTX treatment. In conclusion, LDE-DTX showed a wide array of strong effects on pro-inflammatory and proliferation-promoting factors that drive the lesion development. These findings and the lack of observable toxicity indicate that LDE-DTX can be a candidate for future clinical trials.


Assuntos
Anti-Inflamatórios/farmacologia , Aorta/efeitos dos fármacos , Aortite/prevenção & controle , Aterosclerose/prevenção & controle , Proliferação de Células/efeitos dos fármacos , Docetaxel/farmacologia , Lipídeos/química , Nanopartículas , Placa Aterosclerótica , Animais , Anti-Inflamatórios/química , Aorta/metabolismo , Aorta/patologia , Aortite/metabolismo , Aortite/patologia , Proteínas Reguladoras de Apoptose/metabolismo , Aterosclerose/metabolismo , Aterosclerose/patologia , Morte Celular/efeitos dos fármacos , Colesterol na Dieta , Dieta Hiperlipídica , Modelos Animais de Doenças , Docetaxel/química , Composição de Medicamentos , Colágenos Fibrilares/metabolismo , Mediadores da Inflamação/metabolismo , Masculino , Antígeno Nuclear de Célula em Proliferação/metabolismo , Fator de von Willebrand/metabolismo
6.
Cardiovasc Res ; 115(4): 807-818, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30428004

RESUMO

AIMS: Abdominal aortic aneurysm (AAA) is one of the number of diseases associated with a prominent inflammatory cell infiltration, matrix protein degradation, and smooth muscle cell apoptosis. CD95 is an inflammatory mediator and an apoptosis inducer. Previous studies have shown elevated expression of CD95 or CD95L in the aortic tissue of AAA patients. However, how the CD95L/CD95 contributes to aneurysm degeneration and whether blocking its signalling would be beneficial to disease progression remains largely unknown. In the present study, we sought to determine the role of CD95L and its downstream target, caspase 8, in AAA progression. METHODS AND RESULTS: By using the CaCl2 murine model of AAA, abdominal aortic aneurysms were induced in C57BL/6 mice. We found that both mRNA and protein levels of CD95L were increased in aneurysm tissue compared with NaCl-treated normal aortic tissue. To determine whether CD95L contributes directly to aneurysm formation, we used CD95L null (CD95L-/-) mice to examine their response to CaCl2 aneurysm induction. Six weeks after periaortic application of CaCl2, aortic diameters of CD95L-/- mice were significantly smaller compared to CaCl2-treated wild-type controls. Connective tissue staining of aortic sections from CaCl2-treated CD95L-/- mice showed minimal damage of medial elastic lamellae which was indistinguishable from the NaCl-treated sham control. Furthermore, CD95L deficiency attenuates macrophage and T cell infiltration into the aortic tissue. To study the role of CD95L in the myelogeous cells in AAA formation, we created chimaeric mice by infusing CD95L-/- bone marrow into sub-leathally irradiated wild-type mice (WT/CD95L-/-BM). As controls, wild-type bone marrow were infused into sub-leathally irradiated CD95L-/- mice (CD95L-/-/WTBM). WT/CD95L-/-BM mice were resistant to aneurysm formation compared to their controls. Inflammatory cell infiltration was blocked by the deletion of CD95L on myeloid cells. Western blot analysis showed the levels of caspase 8 in the aortas of CaCl2-treated wild-type mice were increased compared to NaCl-treated controls. CD95L deletion inhibited caspase 8 expression. Furthermore, a caspase 8-specific inhibitor was able to partially block aneurysm development in CaCl2-treated aneurysm models. CONCLUSION: These studies demonstrated that inflammatory cell infiltration during AAA formation is dependent on CD95L from myelogeous cells. Aneurysm inhibition by deletion of CD95L is mediated in part by down-regulation of caspase 8.


Assuntos
Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/metabolismo , Aortite/metabolismo , Proteína Ligante Fas/metabolismo , Macrófagos/metabolismo , Linfócitos T/metabolismo , Animais , Aorta Abdominal/efeitos dos fármacos , Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/prevenção & controle , Aortite/induzido quimicamente , Aortite/patologia , Aortite/prevenção & controle , Cloreto de Cálcio , Estudos de Casos e Controles , Caspase 8/metabolismo , Inibidores de Caspase/farmacologia , Quimiotaxia de Leucócito , Modelos Animais de Doenças , Progressão da Doença , Proteína Ligante Fas/deficiência , Proteína Ligante Fas/genética , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais , Linfócitos T/efeitos dos fármacos , Linfócitos T/patologia
7.
Arterioscler Thromb Vasc Biol ; 38(10): 2295-2305, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30354204

RESUMO

Objective- Signaling that activates NFκB (nuclear factor κB) in smooth muscle cells (SMCs) is integral to atherosclerosis and involves reversible ubiquitination that activates proteins downstream of proatherogenic receptors. Deubiquitination of these proteins is mediated by USP20 (ubiquitin-specific protease 20), among other deubiquitinases. We sought to determine whether USP20 activity in SMCs decreases atherosclerosis. Approach and Results- To address this question, we used male Ldlr-/- mice without (control) or with SMC-specific expression of murine USP20 (SMC-USP20-transgenic) or its dominant-negative (DN; C154S/H643Q) mutant (SMC-DN-USP20-transgenic). Before the appearance of intimal macrophages, NFκB activation in aortic medial SMCs was greater in SMC-DN-USP20-transgenic than in control mice. After 16 weeks on a Western diet, SMC-DN-USP20-transgenic mice had 46% greater brachiocephalic artery atheroma area than control mice. Congruently, aortic atherosclerosis assessed en face was 21% greater than control in SMC-DN-USP20-transgenic mice and 13% less than control in SMC-USP20-transgenic mice. In response to TNF (tumor necrosis factor), SMCs from SMC-DN-USP20-transgenic mice showed ≈3-fold greater NFκB activation than control SMCs. Silencing USP20 in SMCs with siRNA (small interfering RNA) augmented NFκB activation by ≈50% in response to either TNF or IL-1ß (interleukin-1ß). Coimmunoprecipitation experiments revealed that USP20 associates with several components of the TNFR1 (TNF receptor-1) signaling pathway, including RIPK1 (receptor-interacting protein kinase 1), a critical checkpoint in TNF-induced NFκB activation and inflammation. TNF evoked ≈2-fold more RIPK1 ubiquitination in SMC-DN-USP20-transgenic than in control SMCs, and RIPK1 was deubiquitinated by purified USP20 in vitro. Conclusions- USP20 attenuates TNF- and IL-1ß-evoked atherogenic signaling in SMCs, by deubiquitinating RIPK1, among other signaling intermediates.


Assuntos
Aortite/prevenção & controle , Aterosclerose/prevenção & controle , Endopeptidases/metabolismo , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Fator de Necrose Tumoral alfa/farmacologia , Animais , Aorta/efeitos dos fármacos , Aorta/enzimologia , Aorta/patologia , Aortite/enzimologia , Aortite/genética , Aortite/patologia , Aterosclerose/enzimologia , Aterosclerose/genética , Aterosclerose/patologia , Células Cultivadas , Modelos Animais de Doenças , Endopeptidases/genética , Feminino , Hiperplasia , Interleucina-1beta/farmacologia , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , NF-kappa B/metabolismo , Neointima , Placa Aterosclerótica , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Receptores de LDL , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ubiquitina Tiolesterase , Ubiquitinação
8.
Atherosclerosis ; 276: 74-82, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30048944

RESUMO

BACKGROUND AND AIMS: Angiotensin II (Ang II) infusion promotes the development of aortic aneurysms and accelerates atherosclerosis in ApoE-/- mice. In order to elucidate the role of hematopoietic cells in these pathologies, irradiation and bone marrow transplantation (BMT) are commonly utilized. The aim of this study was to investigate the effects of irradiation and BMT on abdominal and thoracic aortic aneurysm formation and acute leukocyte recruitment in the aortic root and descending aorta, in an experimental mouse model of aortic aneurysm formation. METHODS: ApoE-/- mice were either lethally irradiated and reconstituted with ApoE-/- bone marrow or non-irradiated. Following engraftment, mice were treated with Ang II to induce aortic inflammation and accelerate atherosclerosis. RESULTS: Ang II infusion (0.8 mg/kg/day) in BMT mice resulted in reduced aortic aneurysms and atherosclerosis with decreased leukocyte infiltration in the aorta compared to non-BMT mice, when receiving the same dose of Ang II. Furthermore, the reduced aortic infiltration in BMT mice was accompanied by increased levels of monocytes in the spleen and bone marrow. A dose of 3 mg/kg/day Ang II was required to achieve a similar incidence of aneurysm formation as achieved with 0.8 mg/kg/day in non-BMT mice. CONCLUSIONS: This study provides evidence that BMT can alter inflammatory cell recruitment in experimental mouse models of aortic aneurysm formation and atherosclerosis and suggests that irradiation and BMT have a considerably more complex effect on vascular inflammation, which should be evaluated.


Assuntos
Angiotensina II , Aneurisma da Aorta Abdominal/prevenção & controle , Aneurisma da Aorta Torácica/prevenção & controle , Aortite/prevenção & controle , Aterosclerose/prevenção & controle , Transplante de Medula Óssea , Irradiação Corporal Total , Animais , Aorta Abdominal/metabolismo , Aorta Abdominal/patologia , Aorta Torácica/metabolismo , Aorta Torácica/patologia , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Torácica/induzido quimicamente , Aneurisma da Aorta Torácica/genética , Aneurisma da Aorta Torácica/metabolismo , Ruptura Aórtica/induzido quimicamente , Ruptura Aórtica/genética , Ruptura Aórtica/metabolismo , Ruptura Aórtica/prevenção & controle , Aortite/induzido quimicamente , Aortite/genética , Aortite/metabolismo , Aterosclerose/induzido quimicamente , Aterosclerose/genética , Aterosclerose/metabolismo , Modelos Animais de Doenças , Macrófagos/metabolismo , Macrófagos/efeitos da radiação , Macrófagos/transplante , Masculino , Camundongos Knockout para ApoE , Monócitos/metabolismo , Monócitos/efeitos da radiação , Monócitos/transplante , Placa Aterosclerótica
9.
Circulation ; 138(16): 1706-1719, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-29700120

RESUMO

BACKGROUND: The coagulation system is closely linked with vascular inflammation, although the underlying mechanisms are still obscure. Recent studies show that protease-activated receptor (PAR)-2, a major receptor of activated factor X, is expressed in both vascular cells and leukocytes, suggesting that PAR-2 may contribute to the pathogenesis of inflammatory diseases. Here we investigated the role of PAR-2 in vascular inflammation and atherogenesis. METHODS: We generated apolipoprotein E-deficient ( ApoE-/-) mice lacking systemic PAR-2 expression ( PAR-2-/- ApoE-/-). ApoE-/- mice, which lack or express PAR-2 only in bone marrow (BM) cells, were also generated by BM transplantation. Atherosclerotic lesions were investigated after 20 weeks on a Western-type diet by histological analyses, quantitative reverse transcription polymerase chain reaction, and Western blotting. In vitro experiments using BM-derived macrophages were performed to confirm the proinflammatory roles of PAR-2. The association between plasma activated factor X level and the severity of coronary atherosclerosis was also examined in humans who underwent coronary intervention. RESULTS: PAR-2-/- ApoE-/- mice showed reduced atherosclerotic lesions in the aortic arch ( P<0.05) along with features of stabilized atherosclerotic plaques, such as less lipid deposition ( P<0.05), collagen loss ( P<0.01), macrophage accumulation ( P<0.05), and inflammatory molecule expression ( P<0.05) compared with ApoE-/- mice. Systemic PAR2 deletion in ApoE-/-mice significantly decreased the expression of inflammatory molecules in the aorta. The results of BM transplantation experiments demonstrated that PAR-2 in hematopoietic cells contributed to atherogenesis in ApoE-/- mice. PAR-2 deletion did not alter metabolic parameters. In vitro experiments demonstrated that activated factor X or a specific peptide agonist of PAR-2 significantly increased the expression of inflammatory molecules and lipid uptake in BM-derived macrophages from wild-type mice compared with those from PAR-2-deficient mice. Activation of nuclear factor-κB signaling was involved in PAR-2-associated vascular inflammation and macrophage activation. In humans who underwent coronary intervention, plasma activated factor X level independently correlated with the severity of coronary atherosclerosis as determined by Gensini score ( P<0.05) and plaque volume ( P<0.01). CONCLUSIONS: PAR-2 signaling activates macrophages and promotes vascular inflammation, increasing atherosclerosis in ApoE-/- mice. This signaling pathway may also participate in atherogenesis in humans.


Assuntos
Aorta Torácica/metabolismo , Aortite/metabolismo , Aterosclerose/metabolismo , Mediadores da Inflamação/metabolismo , Ativação de Macrófagos , Macrófagos/metabolismo , Placa Aterosclerótica , Receptor PAR-2/metabolismo , Idoso , Animais , Aorta Torácica/patologia , Aortite/genética , Aortite/patologia , Aortite/prevenção & controle , Aterosclerose/genética , Aterosclerose/patologia , Aterosclerose/prevenção & controle , Células Cultivadas , Doença da Artéria Coronariana/metabolismo , Doença da Artéria Coronariana/patologia , Dieta Ocidental , Modelos Animais de Doenças , Fator Xa/metabolismo , Feminino , Humanos , Lipídeos/sangue , Macrófagos/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Receptor PAR-2/deficiência , Receptor PAR-2/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais
10.
Arterioscler Thromb Vasc Biol ; 38(5): 994-1006, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29496659

RESUMO

OBJECTIVE: Macrophages play a central role in various stages of atherosclerotic plaque formation and progression. The local macrophages reportedly proliferate during atherosclerosis, but the pathophysiological significance of macrophage proliferation in this context remains unclear. Here, we investigated the involvement of local macrophage proliferation during atherosclerosis formation and progression using transgenic mice, in which macrophage proliferation was specifically suppressed. APPROACH AND RESULTS: Inhibition of macrophage proliferation was achieved by inducing the expression of cyclin-dependent kinase inhibitor 1B, also known as p27kip, under the regulation of a scavenger receptor promoter/enhancer. The macrophage-specific human p27kip Tg mice were subsequently crossed with apolipoprotein E-deficient mice for the atherosclerotic plaque study. Results showed that a reduced number of local macrophages resulted in marked suppression of atherosclerotic plaque formation and inflammatory response in the plaque. Moreover, fewer local macrophages in macrophage-specific human p27kip Tg mice helped stabilize the plaque, as evidenced by a reduced necrotic core area, increased collagenous extracellular matrix, and thickened fibrous cap. CONCLUSIONS: These results provide direct evidence of the involvement of local macrophage proliferation in formation and progression of atherosclerotic plaques and plaque stability. Thus, control of macrophage proliferation might represent a therapeutic target for treating atherosclerotic diseases.


Assuntos
Aorta/patologia , Aortite/prevenção & controle , Aterosclerose/prevenção & controle , Proliferação de Células , Ativação de Macrófagos , Macrófagos Peritoneais/patologia , Placa Aterosclerótica , Animais , Aorta/metabolismo , Aortite/genética , Aortite/metabolismo , Aortite/patologia , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Células Cultivadas , Colágeno/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Modelos Animais de Doenças , Fibrose , Mediadores da Inflamação/metabolismo , Macrófagos Peritoneais/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Camundongos Transgênicos , Necrose , Transdução de Sinais
11.
J Nutr Biochem ; 53: 9-19, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29175142

RESUMO

The "first hit" to atherogenesis is driven by toll-like receptor 4, endoplasmic reticulum stress and ultimately metabolic dysfunction. In this study, we hypothesized that a flaxseed oil-enriched diet (FS) abolishes these inflammatory signaling pathway and restore metabolic homeostasis by activating the fatty acid receptor GPR120 in aorta of obese mice. Glucose homeostasis was assessed by GTT and ITT; lipidomics was performed using a Hybrid Ion Trap-Orbitrap Mass Spectrometer; serum lipids were measured using colorimetric assays; GPR120 and infiltrating macrophages were analyzed by immunofluorescence; protein immunoprecipitation and gene expression were evaluated by Western blot and RT-PCR, respectively. There were no differences in body weight and food intake between the groups from both strains (Swiss and LDLr-KO mice). GTT and cholesterol levels were improved by FS in both mice models. Lipidomics showed an increase in ω3 (C18:3) content, meanwhile stearic acid (C18:0) was not detected in endothelial tissue in response to FS. Moreover, FS markedly decreased pro-inflammatory (IL-1ß, TNF-α, pIκBα, pIKKß) and unfolded protein response markers (ATF6 and GRP78) in aorta. In Swiss mice, GPR120 was partially involved in the ω3-mediated anti-inflammatory actions, disrupting TLR4 pathway, but not in LDLr-KO mice. Partial replacement of dietary saturated by unsaturated ω3 fatty acids contributes to inhibition of cardiovascular risk markers, pro-inflammatory cytokines and ER stress sensors and effectors in the aorta. However, downregulation of inflammation is not mediated by arterial GPR120 activation.


Assuntos
Aortite/prevenção & controle , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Óleo de Semente do Linho/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Animais , Aortite/metabolismo , Modelos Animais de Doenças , Dislipidemias/dietoterapia , Dislipidemias/fisiopatologia , Chaperona BiP do Retículo Endoplasmático , Ácidos Graxos Ômega-3/farmacologia , Óleo de Semente do Linho/química , Lipídeos/sangue , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Obesidade/dietoterapia , Obesidade/fisiopatologia , Substâncias Protetoras/farmacologia , Receptores de LDL/genética
12.
Arterioscler Thromb Vasc Biol ; 37(11): 2161-2170, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28882868

RESUMO

OBJECTIVE: Abdominal aortic aneurysm (AAA) is an increasingly prevalent and ultimately fatal disease with no effective pharmacological treatment. Because matrix degradation induced by vascular inflammation is the major pathophysiology of AAA, attenuation of this inflammation may improve its outcome. Previous studies suggested that miR-33 (microRNA-33) inhibition and genetic ablation of miR-33 increased serum high-density lipoprotein cholesterol and attenuated atherosclerosis. APPROACH AND RESULTS: MiR-33a-5p expression in central zone of human AAA was higher than marginal zone. MiR-33 deletion attenuated AAA formation in both mouse models of angiotensin II- and calcium chloride-induced AAA. Reduced macrophage accumulation and monocyte chemotactic protein-1 expression were observed in calcium chloride-induced AAA walls in miR-33-/- mice. In vitro experiments revealed that peritoneal macrophages from miR-33-/- mice showed reduced matrix metalloproteinase 9 expression levels via c-Jun N-terminal kinase inactivation. Primary aortic vascular smooth muscle cells from miR-33-/- mice showed reduced monocyte chemotactic protein-1 expression by p38 mitogen-activated protein kinase attenuation. Both of the inactivation of c-Jun N-terminal kinase and p38 mitogen-activated protein kinase were possibly because of the increase of ATP-binding cassette transporter A1 that is a well-known target of miR-33. Moreover, high-density lipoprotein cholesterol derived from miR-33-/- mice reduced expression of matrix metalloproteinase 9 in macrophages and monocyte chemotactic protein-1 in vascular smooth muscle cells. Bone marrow transplantation experiments indicated that miR-33-deficient bone marrow cells ameliorated AAA formation in wild-type recipients. MiR-33 deficiency in recipient mice was also shown to contribute the inhibition of AAA formation. CONCLUSIONS: These data strongly suggest that inhibition of miR-33 will be effective as a novel strategy for treating AAA.


Assuntos
Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/prevenção & controle , Aortite/prevenção & controle , Mediadores da Inflamação/metabolismo , MicroRNAs/metabolismo , Angiotensina II , Animais , Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/metabolismo , Aortite/induzido quimicamente , Aortite/genética , Aortite/metabolismo , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Transplante de Medula Óssea , Cloreto de Cálcio , Linhagem Celular , Quimiocina CCL2/metabolismo , HDL-Colesterol/sangue , Dilatação Patológica , Modelos Animais de Doenças , Feminino , Predisposição Genética para Doença , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Macrófagos Peritoneais/metabolismo , Macrófagos Peritoneais/patologia , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Fenótipo , Transdução de Sinais , Fatores de Tempo , Transfecção , Remodelação Vascular , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
13.
Gen Physiol Biophys ; 36(3): 353-359, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28635612

RESUMO

The aim of the work was to study the delayed effect of lipopolysaccharide (LPS) administration on endothelial function of the aorta of rats with genetic hypertension. Further, the possibility to ameliorate LPS-induced changes by n-3 polyunsaturated fatty acids (n-3 PUFA) was tested. Rats received a bolus of 1 mg/kg LPS i.p.; n-3 PUFA were administered in the dose of 30 mg/kg daily for 10 days p.o.. Ten days after receiving of LPS, the body weight gain of rats was statistically lower compared to control rats (p < 0.05). n-3 PUFA administration to LPS rats had no effect on this parameter. The TBARS and NAGA concentrations in plasma were significantly increased in the LPS group (p < 0.05) and n-3 PUFA administration returned them to control values. In functional studies, phenylephrine (PE, 1 µmol/l) evoked contraction of aortas which was not statistically different among experimental groups. However, endothelium-dependent relaxation was depressed in the LPS group (p < 0.05) and n-3 PUFA slightly recovered it to control values. In conclusion, oxidative stress seems to be responsible for aortic endothelial dysfunction detected 10 days after administration of LPS to rats. n-3 PUFA slightly improved the function of the endothelium injured by LPS, probably thanks to their antioxidant properties. Prolonged administration of higher doses of n-3 PUFA should defend the vascular endothelium against detrimental effect of bacterial inflammation.


Assuntos
Aorta/efeitos dos fármacos , Aorta/imunologia , Aortite/induzido quimicamente , Aortite/imunologia , Ácidos Graxos Ômega-3/administração & dosagem , Lipopolissacarídeos , Animais , Aortite/prevenção & controle , Interações Medicamentosas , Hipertensão/imunologia , Masculino , Ratos , Ratos Endogâmicos SHR
14.
Nutr Metab Cardiovasc Dis ; 26(9): 797-807, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27212619

RESUMO

BACKGROUND AND AIMS: Advanced glycation end products (AGEs)-receptor RAGE interaction evokes oxidative stress and inflammatory reactions, thereby being involved in endothelial cell (EC) damage in diabetes. Sulforaphane is generated from glucoraphanin, a naturally occurring isothiocyanate found in widely consumed cruciferous vegetables, by myrosinase. Sulforaphane has been reported to protect against oxidative stress-mediated cell and tissue injury. However, effects of sulforaphane on AGEs-induced vascular damage remain unclear. METHODS AND RESULTS: In this study, we investigated whether and how sulforaphane could inhibit inflammation in AGEs-exposed human umbilical vein ECs (HUVECs) and AGEs-injected rat aorta. Sulforaphane treatment for 4 or 24 h dose-dependently inhibited the AGEs-induced increase in RAGE, monocyte chemoattractant protein-1 (MCP-1), intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecular-1 (VCAM-1) gene expression in HUVECs. AGEs significantly stimulated MCP-1 production by, and THP-1 cell adhesion to, HUVECs, both of which were prevented by 1.6 µM sulforaphane. Sulforaphane significantly suppressed oxidative stress generation and NADPH oxidase activation evoked by AGEs in HUVECs. Furthermore, aortic RAGE, ICAM-1 and VCAM-1 expression in AGEs-injected rats were increased, which were suppressed by simultaneous infusion of sulforaphane. CONCLUSION: The present study demonstrated for the first time that sulforaphane could inhibit inflammation in AGEs-exposed HUVECs and AGEs-infused rat aorta partly by suppressing RAGE expression through its anti-oxidative properties. Inhibition of the AGEs-RAGE axis by sulforaphane might be a novel therapeutic target for vascular injury in diabetes.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Aorta/efeitos dos fármacos , Aortite/prevenção & controle , Células Endoteliais/efeitos dos fármacos , Produtos Finais de Glicação Avançada , Isotiocianatos/farmacologia , Animais , Aorta/metabolismo , Aortite/induzido quimicamente , Aortite/metabolismo , Moléculas de Adesão Celular/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Células Endoteliais/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Mediadores da Inflamação/metabolismo , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Wistar , Receptor para Produtos Finais de Glicação Avançada/efeitos dos fármacos , Receptor para Produtos Finais de Glicação Avançada/genética , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Sulfóxidos , Fatores de Tempo
15.
J Diabetes Complications ; 30(4): 563-72, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26908090

RESUMO

OBJECTIVES: Hyperglycemia-induced inflammation is central to the vascular complications in diabetes. Toll-like receptors (TLRs) are key players in regulating inflammatory responses. There are sparse data on the role of TLR2 and TLR4 in regulating human macrovascular aortic endothelial cells (HMAECs) inflammation and glycocalyx dysfunction under hyperglycemia. We examined the role of TLR2/4 in the above dysfunctions in HMAEC under high glucose (HG) conditions. METHODS: HMAECs were treated with high or normal glucose and TLR-2, TLR-4, MyD88, IRF3, TRIF, nuclear NF-κB p65, IL-8, IL-1ß, TNF-α, MCP-1, ICAM-1, sVCAM-1, monocyte adhesion to HMAECs, heparan sulfate and hyaluronic acid were measured. RESULTS: HG upregulated TLR2 and TLR4 mRNA and protein and increased both MyD88 and non-MyD88 pathways, NF-κB p65, inflammatory biomediators, and monocyte adhesion to HMAECs. Heparan sulfate protein expression was reduced and hyaluronic acid secretion was increased on HG exposure. Inhibition of TLR2 and TLR4 signaling by inhibitory peptides and knockdown of TLR-2 and TLR-4 gene expression by siRNA attenuated HG induced inflammation, leukocyte adhesion and glycocalyx dysfunction. An increase in ROS paralleled the increase in TLR-2/4 and antioxidants treatment reduced TLR-2/4 expression and downstream inflammatory biomediators. CONCLUSION: Thus hyperglycemia induces HMAEC inflammation and glycocalyx dysfunction through TLR-2/4 pathway activation via increased ROS.


Assuntos
Aorta/metabolismo , Aortite/etiologia , Endotélio Vascular/metabolismo , Glicocálix/metabolismo , Hiperglicemia/metabolismo , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Antioxidantes/farmacologia , Aorta/efeitos dos fármacos , Aorta/imunologia , Aorta/patologia , Aortite/complicações , Aortite/prevenção & controle , Biomarcadores/metabolismo , Adesão Celular/efeitos dos fármacos , Células Cultivadas , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Angiopatias Diabéticas/etiologia , Angiopatias Diabéticas/prevenção & controle , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/imunologia , Endotélio Vascular/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Glicocálix/efeitos dos fármacos , Glicocálix/imunologia , Glicocálix/patologia , Humanos , Hiperglicemia/imunologia , Hiperglicemia/patologia , Hiperglicemia/fisiopatologia , Leucócitos/efeitos dos fármacos , Leucócitos/imunologia , Leucócitos/patologia , Microscopia de Fluorescência , Estresse Oxidativo/efeitos dos fármacos , Interferência de RNA , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Receptor 2 Toll-Like/antagonistas & inibidores , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/antagonistas & inibidores , Receptor 4 Toll-Like/genética
16.
Cardiovasc Res ; 106(3): 478-87, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25858253

RESUMO

AIMS: Atypical chemokine receptor 1 (Ackr1; previously known as the Duffy antigen receptor for chemokines or Darc) is thought to regulate acute inflammatory responses in part by scavenging inflammatory CC and CXC chemokines; however, evidence for a role in chronic inflammation has been lacking. Here we investigated the role of Ackr1 in chronic inflammation, in particular in the setting of atherogenesis, using the apolipoprotein E-deficient (ApoE(-/-)) mouse model. METHODS AND RESULTS: Ackr1(-/-)ApoE(-/-) and Ackr1(+/+)ApoE(-/-) littermates were obtained by crossing ApoE(-/-) mice and Ackr1(-/-) mice on a C57BL/6J background. Ackr1 (+/+)ApoE(-/-)mice fed a Western diet up-regulated Ackr1 expression in the aorta and had markedly increased atherosclerotic lesion size compared with Ackr1(-/-)ApoE(-/-) mice. This difference was observed in both the whole aorta and the aortic root in both early and late stages of the model. Ackr1 deficiency did not affect serum cholesterol levels or macrophage, collagen or smooth muscle cell content in atherosclerotic plaques, but significantly reduced the expression of Ccl2 and Cxcl1 in the whole aorta of ApoE(-/-) mice. In addition, Ackr1 deficiency resulted in a modest decrease in T cell subset frequency and inflammatory mononuclear phagocyte content in aorta and blood in the model. CONCLUSIONS: Ackr1 deficiency appears to be protective in the ApoE knockout model of atherogenesis, but it is associated with only modest changes in cytokine and chemokine expression as well as T-cell subset frequency and inflammatory macrophage content.


Assuntos
Aorta , Aortite , Apolipoproteínas E , Aterosclerose , Receptores de Superfície Celular , Animais , Feminino , Transferência Adotiva , Aorta/imunologia , Aorta/metabolismo , Aorta/patologia , Aortite/genética , Aortite/imunologia , Aortite/metabolismo , Aortite/patologia , Aortite/prevenção & controle , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Aterosclerose/genética , Aterosclerose/imunologia , Aterosclerose/metabolismo , Aterosclerose/patologia , Aterosclerose/prevenção & controle , Moléculas de Adesão Celular/metabolismo , Células Cultivadas , Quimiocina CCL2/metabolismo , Quimiocina CXCL1/metabolismo , Dieta Ocidental , Modelos Animais de Doenças , Sistema do Grupo Sanguíneo Duffy/genética , Mediadores da Inflamação/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Placa Aterosclerótica , Receptores de Superfície Celular/deficiência , Receptores de Superfície Celular/genética , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/transplante , Fatores de Tempo
17.
Arterioscler Thromb Vasc Biol ; 34(1): 52-60, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24158519

RESUMO

OBJECTIVE: The peroxisome proliferator-activated receptor (PPAR) δ regulates systemic lipid homeostasis and inflammation. However, the ability of PPARδ agonists to improve the pathology of pre-established lesions and whether PPARδ activation is atheroprotective in the setting of insulin resistance have not been reported. Here, we examine whether intervention with a selective PPARδ agonist corrects metabolic dysregulation and attenuates aortic inflammation and atherosclerosis. APPROACH AND RESULTS: Low-density lipoprotein receptor knockout mice were fed a chow or a high-fat, high-cholesterol (HFHC) diet (42% fat, 0.2% cholesterol) for 4 weeks. For a further 8 weeks, the HFHC group was fed either HFHC or HFHC plus GW1516 (3 mg/kg per day). GW1516 significantly attenuated pre-established fasting hyperlipidemia, hyperglycemia, and hyperinsulinemia, as well as glucose and insulin intolerance. GW1516 intervention markedly reduced aortic sinus lesions and lesion macrophages, whereas smooth muscle α-actin was unchanged and collagen deposition enhanced. In aortae, GW1516 increased the expression of the PPARδ-specific gene Adfp but not PPARα- or γ-specific genes. GW1516 intervention decreased the expression of aortic proinflammatory M1 cytokines, increased the expression of the anti-inflammatory M2 cytokine Arg1, and attenuated the iNos/Arg1 ratio. Enhanced mitogen-activated protein kinase signaling, known to induce inflammatory cytokine expression in vitro, was enhanced in aortae of HFHC-fed mice. Furthermore, the HFHC diet impaired aortic insulin signaling through Akt and forkhead box O1, which was associated with elevated endoplasmic reticulum stress markers CCAAT-enhancer-binding protein homologous protein and 78kDa glucose regulated protein. GW1516 intervention normalized mitogen-activated protein kinase activation, insulin signaling, and endoplasmic reticulum stress. CONCLUSIONS: Intervention with a PPARδ agonist inhibits aortic inflammation and attenuates the progression of pre-established atherosclerosis.


Assuntos
Anti-Inflamatórios/farmacologia , Aortite/prevenção & controle , Aterosclerose/prevenção & controle , Resistência à Insulina , PPAR delta/agonistas , Receptores de LDL/deficiência , Tiazóis/farmacologia , Animais , Aortite/sangue , Aortite/etiologia , Aortite/genética , Aortite/patologia , Aterosclerose/sangue , Aterosclerose/etiologia , Aterosclerose/genética , Aterosclerose/patologia , Biomarcadores/sangue , Glicemia/metabolismo , Colesterol na Dieta , Dieta Hiperlipídica , Modelos Animais de Doenças , Dislipidemias/sangue , Dislipidemias/tratamento farmacológico , Dislipidemias/genética , Dislipidemias/metabolismo , Mediadores da Inflamação/metabolismo , Insulina/sangue , Lipídeos/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , PPAR delta/metabolismo , Receptores de LDL/genética , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
18.
Clin Sci (Lond) ; 126(9): 671-8, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24256203

RESUMO

In the present study we sought to determine the effect of CoCl2, an inhibitor of PHD (prolyl hydroxylase domain protein), on the development of AAA (abdominal aortic aneurysm). AAA was induced in C57BL/6 mice by periaortic application of CaCl2 (AAA group). NaCl (0.9%)-treated mice were used as a sham control (SHAM group). Mice were treated with 0.05% CoCl2 in the drinking water (AAA/CoCl2 group). At 1 and 6 weeks after the operation, aortic tissue was excised for further examination. After 6 weeks of CaCl2 treatment, aortic diameter and macrophage infiltration into the aortic adventitia were increased in the AAA group compared with the SHAM group. Treatment with CoCl2 reduced the aneurysmal size and macrophage infiltration compared with the AAA group. Aortic expression of inflammatory cytokines and MCP-1 (monocyte chemoattractant protein-1) and the activities of MMP-9 (matrix metalloproteinase-9) and MMP-2 were enhanced in the AAA group and attenuated in the AAA/CoCl2 group. Expression of cytokines and the activities of MMPs were already increased after 1 week of CaCl2 treatment, but were suppressed by CoCl2 treatment in association with reduced NF-κB (nuclear factor κB) phosphorylation. Treatment with CoCl2 in mice prevented the development of CaCl2-induced AAA in association with reduced inflammation and ECM (extracellular matrix) disruption. The results of the present study suggest that PHD plays a critical role in the development of AAA and that there is a therapeutic potential for PHD inhibitors in the prevention of AAA development.


Assuntos
Aorta Abdominal/efeitos dos fármacos , Aneurisma da Aorta Abdominal/prevenção & controle , Aortite/prevenção & controle , Cobalto/farmacologia , Inibidores Enzimáticos/farmacologia , Matriz Extracelular/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/antagonistas & inibidores , Animais , Aorta Abdominal/enzimologia , Aorta Abdominal/imunologia , Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/enzimologia , Aneurisma da Aorta Abdominal/imunologia , Aneurisma da Aorta Abdominal/patologia , Aortite/induzido quimicamente , Aortite/enzimologia , Aortite/imunologia , Aortite/patologia , Cloreto de Cálcio , Catalase/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Mediadores da Inflamação/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1 , Fatores de Tempo , Fator de Transcrição RelA/metabolismo
20.
J Surg Res ; 164(1): e185-91, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20828762

RESUMO

BACKGROUND: Infections after prosthetic replacement of the aorta remain a serious and life-threatening complication. The only appropriate treatment is the surgical removal of the infected prosthesis. Accordingly, there is a need for new procedures to prevent the infection of vascular prostheses. This in vitro experiment investigated the effect of the pretreatment of vascular prostheses with antibiotics (daptomycin or baneocin) and the effect of antibiotics combined with fibrin sealant as possible prophylaxis of perioperative graft infection. METHODS: Untreated prostheses served as controls. Pretreated prostheses of double woven velour vascular grafts were contaminated with Staphylococcus epidermidis, and colony-forming units were counted each day (CFU/mL). RESULTS: The period of sterility differed significantly as a function of the pretreatment. Uncoated prostheses were immediately non-sterile and exhibited 2.63 ± 0.61 × 10(5) CFU/mL. Baneocin pretreatment resulted in sterility for 1.7 ± 0.6 (95% confidence interval (CI) 1.0-2.4) d before we detected 2.14 ± 0.57 × 10(5) CFU/mL on the prostheses. Pretreatment with daptomycin yielded 2.9 ± 0.4 (CI 2.6-3.2) and fibrin sealant/baneocin compound yielded 3.1 ± 0.3 (CI 2.9-3.3) d of sterility, after which 1.81 ± 0.86 × 10(5) CFU/mL and 1.04 ± 0.77 × 10(5) CFU/mL were recorded. Finally, pretreatment with fibrin sealant/daptomycin led to sterility for 7.1 ± 0.3 (CI 6.9-7.3) d, after which 0.77 ± 0.60 × 10(5) CFU/mL were observed on the prostheses. CONCLUSIONS: The risk of vascular graft infection is reduced by pretreating the prostheses with antibiotics. The antibiotic/fibrin compound exhibited an effect of delayed antibiotic release. Vascular prostheses should therefore be pretreated with antibiotic solution to reduce bacterial adhesion. This procedure might be an effective prophylaxis for perioperative vascular graft infection and provides suitable protection for the prosthetic material.


Assuntos
Antibacterianos/uso terapêutico , Aortite/prevenção & controle , Prótese Vascular/microbiologia , Daptomicina/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos , Infecções Relacionadas à Prótese/prevenção & controle , Aortite/tratamento farmacológico , Aortite/epidemiologia , Bacitracina/uso terapêutico , Prótese Vascular/efeitos adversos , Contagem de Colônia Microbiana , Adesivo Tecidual de Fibrina/uso terapêutico , Humanos , Técnicas In Vitro , Neomicina/uso terapêutico , Poliésteres , Infecções Relacionadas à Prótese/tratamento farmacológico , Infecções Relacionadas à Prótese/epidemiologia , Fatores de Risco , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/epidemiologia , Infecções Estafilocócicas/prevenção & controle , Staphylococcus epidermidis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...